Learning Vector Quantization With Alternative Distance Criteria
نویسندگان
چکیده
An adaptive algorithm for training of a Nearest Neighbour (NN) classifier is developed in this paper. This learning rule has got some similarity to the well-known LVQ method, but using the nearest centroid neighbourhood concept to estimate optimal locations of the codebook vectors. The aim of this approach is to improve the performance of the standard LVQ algorithms when using a very small codebook. The behaviour of the learning technique proposed here is experimentally compared to those of the plain k-NN decision rule and the LVQ algorithms.
منابع مشابه
Divergence based Learning Vector Quantization
We suggest the use of alternative distance measures for similarity based classification in Learning Vector Quantization. Divergences can be employed whenever the data consists of non-negative normalized features, which is the case for, e.g., spectral data or histograms. As examples, we derive gradient based training algorithms in the framework of Generalized Learning Vector Quantization based o...
متن کاملThe Time Adaptive Self Organizing Map for Distribution Estimation
The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...
متن کاملThe Mathematics of Divergence Based Online Learning in Vector Quantization
We propose the utilization of divergences in gradient descent learning of supervised and unsupervised vector quantization as an alternative for the squared Euclidean distance. The approach is based on the determination of the Fréchet-derivatives for the divergences, wich can be immediately plugged into the online-learning rules.We provide themathematical foundation of the respective framework. ...
متن کاملRelevance matrices in LVQ
We propose a new matrix learning scheme to extend Generalized Relevance Learning Vector Quantization (GRLVQ). By introducing a full matrix of relevance factors in the distance measure, correlations between different features and their importance for the classification scheme can be taken into account. In comparison to the weighted euclidean metric used for GRLVQ, this metric is more powerful to...
متن کاملAdaptive Relevance Matrices in Learning Vector Quantization
We propose a new matrix learning scheme to extend relevance learning vector quantization (RLVQ), an efficient prototype-based classification algorithm, toward a general adaptive metric. By introducing a full matrix of relevance factors in the distance measure, correlations between different features and their importance for the classification scheme can be taken into account and automated, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999